Warm and Cold Forging Die Steel

High hard and tough matrix type high speed tool steel

Features

Matrix type high speed tool steel available for warm and cold forging tools where critical performance is required. DRM2 prolongs service life due to its higher hardness and toughness than those of conventional grades.

1. Applicable with the maximum hardness $62 H R C$
2. Fine microstructure contributes to high toughness and fatigue strength
3. Greater hardenahility results in high performance even in large dies and gas quenching in vacuum furnace.
4. Double melting realizes clean and homogeneous steel with less non-metallic inclusions

Applications

- Warm forging dies and punches
- Cold forging dies and punches

Heat treatment

DRM2 Harden 1100C (2012F) Draws (minimum of 2)
Recommend a minimum 6 barr quench

Re-forging
Temperature

Heat treatment conditions $\left({ }^{\circ} \mathrm{C}\right)$
Annealing
Quenching
Tempering

Maximum toughness 600C (1112F) HRC58
Good toughness \& wear 580C (1076F) HRC60
Maximum wear
550C (1022F) HRC62
Hardness
Hardening/Tempering

OQ: Oil quenching, GC: Gas quenching in vacuum furnace, AC: Air cooling

Microstructure (As annealed)

Fine and uniform microstructure with less coarse carbides.

(Cr) O_{2} Eletrically etching
Toughness: charpy impact property

Hot hardness

Heat checking resistance

- Syexmen
- lleat trammont

DRM2
- 1120 C

T: 56) AC. futhe

T: 54x) (AC. गuice

Hardenability

T: 500 C AC. twhe
Fatigue strength

Sompling \quad : 1 mes

T: द(4) AC: iwhe
Cimmationd sicel … 11 ; 114
1:500 ${ }^{2} \mathrm{AC} .1 \mathrm{uls}$

- Tos muthod : Kotating heming fatigue tev 20 C

Dimensional changes in heat treatment

Physical Properties

	(2)-100 $\left.\right\|^{2}$	21-300. 3	31-300\|	n-100	c $530-500 \mathrm{c}$	[20-600]	$121-700$	21-800c
< t	11.4	11.4	11.3	12.1	13.3	124	12.4	12.4
- Thermal conductivis								
	240	2000	- 300 L		4001 C	5000	600'C	7006
Y/m K	8: 8 	$\begin{gathered} \text { 35 } 4 \\ 0105 \% \end{gathered}$	\% 10 25:		By	$\begin{aligned} & 2 \times 2 \\ & 10 \times 8] \end{aligned}$	$\begin{gathered} 512 \\ 5040 \\ \text { no } \end{gathered}$	$\begin{gathered} 2.267 \\ 10,471 \\ \hline \end{gathered}$
- Specifichoas								
	25 C	300x	C 18000		100\% 1	500 C	6000	700c
$1 / \mathrm{m} \mathrm{~K}$ $\text { जatis } 6$	$\begin{gathered} 188 \\ {[10,302]} \end{gathered}$	$\begin{gathered} 518 \\ 1.125 \end{gathered}$	$4{ }^{\text {a }}$ (10.18		$\begin{gathered} 508 \\ 81431 \end{gathered}$	[698,	$\begin{gathered} 766 \\ {[15161]} \end{gathered}$	910 $[19.37)$

Nitriding

\qquad
$3 \mathrm{~min} \times \mathrm{m}$

- PS proces.

Dento Amoshar's whimalls seveloped pexco fotured by high callimg and emoven sevetianke

DAIDO STEEL

